Using LAMMPS for reversenonequilibrium MD simulations

Craig M. Tenney Edward J. Maginn

University of Notre Dame

LAMMPS Users' Workshop February 2010

motivation

- want to predict viscosity and thermal conductivity for arbitrary fluids...
 - accurately
 - precisely
 - efficiently
 - reliably
- numerous molecular simulation methods exist
 - "best" is rarely obvious a priori

content

- calculation of shear viscosity
 - background
 - non-linearity issues
 - avoiding pitfalls
 - comparison with other methods
- calculation of thermal conductivity
- summary

background

shear viscosity:

flux of transverse linear momentum =

shear viscosity * shear rate

$$j_z = -\eta(\gamma) \cdot \gamma$$

$$\gamma = \frac{\delta v_x}{\delta z}$$

Newtonian: $\eta(\gamma) \rightarrow \eta_0$ as $\gamma \rightarrow 0$

Muller-Plathe, Phys. Rev. E 59, 1999

MD methods for viscosity calculation

- transient
 - growth or decay of velocity perturbation
- steady-state
 - equilibrium
 - auto-correlation of fluctuations in flux or shear
 - e.g. Einstein or Green-Kubo relations
 - non-equilibrium
 - e.g. SLLOD
 - set shear rate and measure momentum flux
 - reverse-NEMD (RNEMD)
 - set momentum flux and measure shear rate

SLLOD (NEMD) algorithm (fix nvt/sllod)

- 1) set shear rate γ via ...
 - Lees-Edwards sliding-brick BCs or ...
 - deforming simulation box
- 2) measure resulting momentum flux $j = \langle P_{xy} \rangle$

(thermostat must account for velocity profile)

RNEMD algorithm (fix viscosity)

1) from bottom and middle bins, find two particles with "slow" v_x (relative to mean bin v_x)

2) swap v_{x} between these particles

3) measure resulting velocity profile

(conserves energy)

Muller-Plathe, Phys. Rev. E 59, 1999

RNEMD algorithm

1) from bottom and middle bins, find two particles with "slow" v_x (relative to mean bin v_x)

2) swap v_x between these particles

3) measure resulting velocity profile

(conserves energy)

Muller-Plathe, Phys. Rev. E 59, 1999

simulation details

(similar to original Muller-Plathe (MP) paper)

- Lennard-Jones fluid
 - reduced density = 0.849
 - reduced temperature = 0.722
- RNEMD
 - 3000 particles
 - $10.56 \times 10.56 \times 31.68 \sigma$ (aka " $10 \times 10 \times 30$ ")
 - 20 bins
 - 500k steps
 - reduced timestep = 0.005

RNEMD viscosity example

- "base case"
 - swap target v_x every 1 step
 - momentum flux = 0.0466
 (equivalent to swapping "slowest"
 v every 60 steps)
 - $L_z \sim "30" \sigma$

RNEMD viscosity example

- "base case"
 - swap target v_x every 1 step
 - momentum flux = 0.0466
 (equivalent to swapping "slowest"
 v every 60 steps)
 - L_z ~ "30" σ
- $dv_x/dz = 0.0142$

$$\rightarrow \eta = 3.28 (+/-0.05)$$

500k steps, 3000 particles

RNEMD viscosity example

- "base case"
 - swap target v_x every 1 step
 - momentum flux = 0.0466
 (equivalent to swapping "slowest"
 v every 60 steps)
 - L_z ~ "30" σ
- $dv_x/dz = 0.0142$

$$\rightarrow \eta = 3.28 (+/-0.05)$$

500k steps, 3000 particles

• SLLOD: $\eta = 3.40 (+/-0.12)$

500k steps, 1000 particles

• EMD: $\eta_0 = 3.35 (+/-0.25)$

RNEMD at high momentum flux

RNEMD at high momentum flux

RNEMD at high momentum flux

base case

0.6

z position

8.0

1.0

0.2

- swap moves conserve energy, but ...
- they remove heat (entropy) from swap bins

setting RNEMD momentum flux

setting RNEMD momentum flux

target flux	ΔΤ	actual flux
high	excessive	< target
moderate	reasonable	just right
low	negligible	≥ target

Tenney and Maginn, J. Chem. Phys 132, 2010

RNEMD at low momentum flux

RNEMD at low momentum flux

~5% base case flux

4x longer simulation (2M steps)

RNEMD, SLLOD, and EMD results

SLLOD results fit to Curreau equation:

$$\eta(\gamma) = \frac{\eta_0}{\left(1 + (\lambda \gamma)^2\right)^{\alpha}}$$
, where $\gamma = shear rate$

RNEMD viscosity summary

- potential advantages
 - NVE ensemble
 - shear profile is not imposed by deforming space
- disadvantages
 - fails at high momentum flux
 - "pulse" issues at low flux
- ambiguities
 - comparable computational efficiency

RNEMD thermal conductivity Muller-Plathe, J. Chem. Phys. 106, 1997

- swap kinetic energy instead of momentum
- fix thermal/conductivity

example: ionic liquid @ 373K

RNEMD thermal conductivity

RNEMD thermal conductivity

RNEMD thermal conductivity

- other options
 - swap between atoms of any mass (LAMMPS mod)
 - hypothetical elastic collision
 - available if Steve wants it
 - swap molecular (c.o.m) kinetic energy
 - allows constraints
 - probably more expensive (not implemented in LAMMPS)
 - possibly better energy conservation
 - instead of swapping, thermostat hot and cold bins
 - track steady-state flux
 - compute temp/region, fix langevin

conclusions

- RNEMD can efficiently provide good viscosity results for 'moderate' shear rates
- RNEMD is less robust than SLLOD
- if SLLOD or EMD won't work, consider RNEMD

 RNEMD thermal conductivity calculations are less finicky than viscosity calculations

acknowledgments

- members of the Maginn group (particularly Sai, for sharing his LAMMPS scripts)
- U.S. Department of Energy
- University of Notre Dame Center for Research Computing

about RNEMD statistics

- we want the uncertainty of $\eta = -j/\gamma$
- from the mean value theorem, for a reasonable number N of independent calculations of a ...

$$a \approx \langle a \rangle \pm \sqrt{\frac{\langle a^2 \rangle - \langle a \rangle^2}{N}}$$

- but at low flux, γ oscillates around 0^+ , so η blows up
- consequently, we used a propogation-of-error model:

$$\Delta \eta = \sqrt{(\Delta \gamma)^2 + (\Delta j)^2}$$

